

I. INTRODUCTION

The quality of timekeeping is critical for many network

protocols and measurement tools. Software packages, such

as UDT[1], thrulay[2] and owamp[3], make control decisions

and network statistics by checking the timestamps on the

sent/received packets, which are normally labeled according

to the system clock. Incorrect and/or imprecise system clock

will inevitably bring negative effects to them, more or less.

Two metrics can be defined for the quality of a clock:

accuracy and precision. Accuracy indicates the bound of a

clock’s offset, comparing with a correct reference; Precision

indicates the resolution, regardless of its reporting

resolution. Although when synchronized with NTP [4],

system clock could achieve satisfying accuracy, its precision

is still a problem at microsecond level. For example, most

Linux kernels update their system time counters at 10-

millisecond interval, and get the time in-between by

interpolating TSC register. As interpolation parameters are

obtained at start-up and TSC register subject to frequency

wander, the interpolated time’s precision is questionable.

II. KEY FEATURES OF TSC-I2

 TSC-I2 (TSC-Internet2) is implemented to address the

precision problem mentioned above. The basic idea is to

make the TSC rate calibration a continuous process, thus the

accuracy of interpolation parameters could be ensured,

which in turn results in satisfying clock precision. TSC-I2

maintains a soft clock of its own, compares this clock to

system clock periodically. During each comparison, it

synchronizes itself with the system clock, and adjusts the

interpolation rate based on the offset and rate errors

regarding to system clock. Whenever the accuracy of the

soft clock is ensured, TSC-I2 uses this clock to report time

to the library user; otherwise, the system clock value is

reported.

 Key features of TSC-I2 include:

1) Sys-clock augmentation, rather than substitution

Only when TSC-clock is in synchronization with system

clock its value is reported; otherwise TSC-I2 wraps system

clock without significant overhead.

2) Quick convergence, with high rate accuracy

A state-machine-controlled PLL (Phase Lock Loop)

traps the rate-induced phase difference between TSC-clock

and system clock. Rate wander is captured within one loop

delay, and corrected in 3 to 4 following loops.

3) Robustness to spikes and system noises

Two filters figure noise out of rate wander. A popcorn

filter picks out offset outliers based on the running standard

deviation test; a spike-detector in the state machine further

filters spikes from the time adjustments.

4) Flexible running options

Both DAEMON mode and CLIENT mode are supported

by TSC-I2. In DAEMON mode, a standalone daemon takes

charge of timekeeping, serving one or more clients. In

CLIENT mode, the library creates a thread running within

the host process. Thus it minimizes the application’s

external dependency.

5) Light weight and resource efficient

TSC-I2 consumes less than 0.5% CPU time when fully

functioning; and the whole package only uses 500k disk

space.

III. DESIGN OF THE LIBRARY

 Fig. 1 sketches the process of TSC-I2. The library first

synchronizes itself with the system clock in offset. So at

that instant, it’s reporting the same time value with system

clock.

 Right after the synchronization, the library gets into rate

converge phase. In this phase, the library adjusts its

interpolation parameters (especially rate), apply it on TSC to

calculate a time value, and compare this value with the

reading of the system clock. If those two match, the

interpolation parameters could be regarded as correct.

Otherwise, the rate is treated as “unstable yet”, and the

phase is repeated. To avoid wrong interpolation parameters

lead correct time value by luck, the rate stable test has to

succeed at least three times before safe assertion could be

made.

 Once the rate is also synchronized, the issue is to

continuously keep this, and adapt to any TSC rate wander.

The PLL observes soft clock reading and system clock

reading during each filter loop; and makes corresponding

rate adjustment to correct future offset error.

Fig. 1 Flow chart of TSC-I2 internal process

IV. CURRENT STATUS

 TSC-I2 has been published under Open Source License at

http://tsc-xluo.sourceforge.net. Present release is 0.08, which

includes a user-mode daemon tsci2d, a C library libtsci2 and

a set of utility tools as tsci2demo and tsci2measure. TSC-I2

currently supports IA32, AMD64 and Power PC

TSC-I2: A Lightweight Implementation for Precision-Augmented

Timekeeping

Xun Luo, University of Illinois at Chicago, xluo@cs.uic.edu

Sync with Sysclock in offset

Sync with Sysclock in rate

Get into PLL to keep sync

Fail to sync?

Y

Y

Rate Stable?

N

N

architectures, as well as Linux, FreeBSD, Mac OSX and

Microsoft Windows operating systems.

V. ACKNOWLEDGEMENTS

 I would like to thank Google Inc., who initiated the

"Summer of Code" event to promote open source spirit, and

helped participating students and their mentoring

organizations to match each other based on common

interests. The job of organizing a 400-project event

successfully is great.

 I owe much to my mentoring organization, Internet2, and

its staff Stanislav Shalunov and Jeff Boote. They helped me

and our 10-people "Internet2 group" greatly in many

aspects: managing the mail list; holding office hours;

answering technical questions; reviewing codes; testing

programs; giving critiques and suggestions; and providing

software and hardware supports. Their technical excellence

and generous effort contribution is key to this project. I

sincerely thank them.

 Thanks for all the fellow team members in "Internet2

group" for active discussion, idea sharing and helping to test

programs. This is the first team I have been in which is

purely internet-connected. The experience is such a fun and

will surely benefit me in the future.

REFERENCES

[1] http://udt.sourceforge.net/.

[2] http://www.internet2.edu/~shalunov/thrulay/.

[3] http://e2epi.internet2.edu/owamp/.

[4] http://www.ntp.org/

